Acta Crystallographica Section E
Structure Reports Online

ISSN 1600-5368

Tarimala Seshadri, Ulrich Flörke* and Gerald Henkel

Department Chemie, Fakultät für
Naturwissenschaften, Universität Paderborn, Warburgerstraße 100, D-33098 Paderborn,
Germany
Correspondence e-mail:
uf@chemie.uni-paderborn.de

Key indicators

Single-crystal X-ray study
$T=120 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.043$
$w R$ factor $=0.107$
Data-to-parameter ratio $=9.1$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

N-(8-Quinolyl)-o-phenylenediamine

The crystal packing of the title compound, $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{~N}_{3}$, is determined by intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ interactions, resulting in parallel rows of molecules along [100].

Comment

Studies related to the complex-forming properties of 8aminoquinoline and its derivatives are very rare. Although N -(8-quinolyl)-o-phenylendiamine (8-Q-phen) is a very interesting tridentate ligand which was synthesized by Jensen \& Nielsen (1964), none of its donating properties have been explored, except for a $\mathrm{Ni}^{\mathrm{II}}$ complex (Okada et al., 2001). A Pt complex with o-dimethylaminophenyl(8-quinolinyl)amine as ligand has been studied by Peters et al. (2001). The primary amino group in the ligand 8-Q-phen can undergo several substitution reactions and a variety of Schiff base derivatives can be prepared to obtain hitherto unknown hexa- and octadentate ligands which provide access to multinuclear metal complexes.

(1)

In the present study, we report the crystal structure of the parent title compound, (I). In (I) (Fig. 1), the planes of the substituted phenyl ring C1-C6 and the quinolyl system $\mathrm{N} 3 / \mathrm{C} 7-$ C15 are almost perpendicular, with a dihedral angle of $76.95(6)^{\circ}$; the torsion angle $\mathrm{C} 7-\mathrm{N} 2-\mathrm{C} 6-\mathrm{C} 5$ is $-95.6(2)^{\circ}$. The $\mathrm{C} 6-\mathrm{N} 2-\mathrm{C} 7$ angle at $s p^{3}$ atom N 2 is 121.4 (2) ${ }^{\circ}$ and the bond lengths $\mathrm{N} 1-\mathrm{C} 1$ [1.381 (3) Å], C1-C6 [1.406 (3) Å], $\mathrm{C} 6-\mathrm{N} 2[1.424(3) \AA$] and $\mathrm{N} 2-\mathrm{C} 7$ [1.385 (2) \AA A lie in the expected ranges, similar to those of phenylethylaminoquinoline (Lynch \& McClenaghan, 2001) and diphenyl-phosphido-methylaminoquinoline (Clarke et al., 2002). Intramolecular hydrogen bonds are formed: N2-H2 $\cdots \mathrm{N} 3$ with $\mathrm{H} \cdots \mathrm{N}=2.25(2) \AA$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}=106(2)^{\circ}$, and $\mathrm{N} 1-$ $\mathrm{H} 1 A \cdots \mathrm{~N} 2$ with $\mathrm{H} \cdots \mathrm{N}=2.43$ (2) \AA and $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}=100(2)^{\circ}$.

Figure 1

The molecular structure of (I). Displacement ellipsoids are drawn at the 50% probability level.

Received 11 February 2004 Accepted 13 February 2004 Online 20 February 2004

Figure 2

Crystal packing of (I), viewed along [010], with the hydrogen-bonding pattern indicated by dashed lines.

The crystal packing (Fig. 2) shows two intermolecular $\mathrm{H} \cdots \mathrm{N}$ interactions [$\mathrm{N} 1-\mathrm{H} 1 B \cdots \mathrm{~N} 3\left(x-\frac{1}{2}, 1-y, z\right)$ with $\mathrm{H} \cdots \mathrm{N}=$ $2.23(2) \AA$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}=151(2)^{\circ}$, and $\mathrm{N} 2-\mathrm{H} 2 \cdots \mathrm{~N} 1\left(x+\frac{1}{2}\right.$, $1-y, z$) with $\mathrm{H} \cdots \mathrm{N}=2.29(3) \AA$ and $\left.\mathrm{N}-\mathrm{H} \cdots \mathrm{N}=164(2)^{\circ}\right]$ which link the molecules in parallel rows along [100]. These values are normalized for $\mathrm{N}-\mathrm{H}=1.03 \AA$, whereas the values in Table 2 are those obtained in the refinement and uncorrected.

Studies are now in progress to examine the coordination properties of this ligand as well as its Schiff bases.

Experimental

Compound (I) was prepared by following the modified Bucherer reaction method of Jensen \& Nielsen (1964). Crystals suitable for diffraction analysis were grown by recrystallization from acetonitrile. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, \delta\right): 8.82(d, 1 \mathrm{H}, 4 \mathrm{~Hz}), 8.13(d, 1 \mathrm{H}$, $8.3 \mathrm{~Hz}), 7.67(s 1 \mathrm{H}), 7.46-7.10(m, 4 \mathrm{H}), 6.91-6.81(m, 3 \mathrm{H}), 3.93(s$, 2H); IR (KBr, $\left.v\left[\mathrm{~cm}^{-1}\right]\right): 3444(s), 3326(s), 1616(s), 1569,1498,819$, $789(s), 756$.

Crystal data

[^0][^1]
Data collection

Bruker SMART CCD area-detector diffractometer
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
$T_{\text {min }}=0.941, T_{\max }=0.989$
7244 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.043$
$w R\left(F^{2}\right)=0.107$
$S=1.11$
1584 reflections
174 parameters

1584 independent reflections
1409 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.059$
$\theta_{\text {max }}=28.3^{\circ}$
$h=-8 \rightarrow 14$
$k=-14 \rightarrow 13$
$l=-12 \rightarrow 13$

H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0655 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.28$ e \AA^{-3}
$\Delta \rho_{\min }=-0.20 \mathrm{e}^{-3}$

Table 1
Hydrogen-bonding geometry $\left(\AA{ }^{\circ}{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 A \cdots \mathrm{~N} 2$	$0.86(3)$	$2.47(3)$	$2.806(3)$	$104(3)$
$\mathrm{N} 2-\mathrm{H} 2 \cdots \mathrm{~N} 3$	$0.81(4)$	$2.32(3)$	$2.719(2)$	$111(2)$
$\mathrm{N} 1-\mathrm{H} 1 B \cdots \mathrm{~N}^{\mathrm{i}}$	$0.97(3)$	$2.29(3)$	$3.175(3)$	$150(2)$
$\mathrm{N} 2-\mathrm{H} 2 \cdots \mathrm{~N}^{1 i}$	$0.81(4)$	$2.51(4)$	$3.298(3)$	$166(3)$

Symmetry codes: (i) $x-\frac{1}{2}, 1-y, z$; (ii) $\frac{1}{2}+x, 1-y, z$.

H atoms attached to C were placed at calculated positions, riding on their carrier atoms, with isotropic displacement parameters $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$. Positional and isotropic displacement parameters of H atoms bonded to N atoms were refined freely; a common $U_{\text {iso }}$ value was refined for atoms $\mathrm{H} 1 A$ and $\mathrm{H} 1 B$. The title compound crystallizes in the non-centrosymmetric space group Pca_{1}; however, in the absence of significant anomalous scattering effects, the Flack (1983) parameter is essentially meaningless. Accordingly, the Friedel pairs were merged.

Data collection: SMART (Bruker, 2002); cell refinement: SMART; data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXTL (Bruker, 2002); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

References

Bruker (2002). SMART (Version 5.62), SAINT (Version 6.02), SHELXTL (Version 6.10) and SADABS (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.
Clarke, M. L., Cole-Hamilton, D. J., Foster, D. F., Slawin, A. M. Z. \& Woolins, J. D. (2002). J. Chem. Soc. Dalton Trans. pp. 1618-1624.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Jensen, K. A. \& Nielsen, P. H. (1964). Acta Chem. Scand. 18, 1-10.
Lynch, D. E. \& McClenaghan, I. (2001). Acta Cryst. E57, o4-o5.
Okada, T., Suzuki, Y., Hirose, T., Toda, T. \& Ozawa, T. (2001). Chem. Commun. pp. 2492-2493.
Peters, J. C., Harkins, S. B., Brown, S. D. \& Day, M. W. (2001). Inorg. Chem. 40, 5083-5091.

[^0]: $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{~N}_{3}$
 $M_{r}=235.28$
 Orthorhombic, Pca2
 $a=10.7227$ (13) \AA
 $b=11.0789$ (13) \AA
 $c=10.1268(12) \AA$
 $V=1203.0$ (2) \AA^{3}
 $Z=4$
 $D_{x}=1.299 \mathrm{Mg} \mathrm{m}^{-3}$

[^1]: Mo $K \alpha$ radiation
 Cell parameters from 1682 reflections
 $\theta=2.6-23.2^{\circ}$
 $\mu=0.08 \mathrm{~mm}^{-1}$
 $T=120$ (2) K
 Plate, colorless
 $0.50 \times 0.45 \times 0.02 \mathrm{~mm}$

